Finding a Formula For $f^{-1}(x)$

Given a formula for $f(x)$, sometimes we would like to find a formula for $f^{-1}(x)$. Using the equivalence

$$
x=f^{-1}(y) \text { if and only if } y=f(x)
$$

we can (sometimes) find a formula for f^{-1} using the following method:

1. In the equation $y=f(x)$, if possible solve for x in terms of y to get a formula $x=f^{-1}(y)$.
2. Switch the roles of x and y to get a formula for f^{-1} of the form $y=f^{-1}(x)$ (this just amounts to a renaming of the variables to make x the independent variable).

Finding a Formula For $f^{-1}(x)$

Example: Let $f(x)=\frac{2 x+1}{x-3}$, find a formula for $f^{-1}(x)$.

1. In the equation $y=\frac{2 x+1}{x-3}$, if possible solve for x in terms of y to get a formula $x=f^{-1}(y)$:

Multiplying across by $x-3$, we get $(x-3) y=2 x+1$ which gives $x y-3 y=2 x+1$
$>$ Bringing the terms with x to one side and all other terms to the other side, we get: $x y-2 x=1+3 y$
$>$ Pulling out the x we get $x(y-2)=1+3 y$ and dividing across by $y-2$, we get $x=\frac{1+3 y}{y-2}$.
$>$ Thus we have $x=f^{-1}(y)=\frac{1+3 y}{y-2}$.
2. Switch the roles of x and y to get a formula for f^{-1} of the form $y=f^{-1}(x)$
$>$ We get $f^{-1}(x)=\frac{1+3 x}{x-2}$ with corresponding equation $y=\frac{1+3 x}{x-2}$.

When do we need a formula For $f^{-1}(x)$

Note: Often, we do not need a formula for $f^{-1}(x)$ in order to find the value of f^{-1} at a specific value of x.

- Recall in the examples with $f(x)=x^{3}+1$ and $g(x)=\cos (x)+2 x$, we did not need to find a formula for $f^{-1}(x)$ or $g^{-1}(x)$ in order to find $f^{-1}(28)$ and $g^{-1}(1)$.
This is especially useful to keep in mind when dealing with functions such as $g(x)=\cos (x)+2 x$ where it is difficult to solve for x and we had to use guesswork to solve it.

