Finding a Formula For $f^{-1}(x)$

Given a formula for f(x), sometimes we would like to find a formula for $f^{-1}(x)$. Using the equivalence

 $x = f^{-1}(y)$ if and only if y = f(x)

we can (sometimes) find a formula for f^{-1} using the following **method**:

- 1. In the equation y = f(x), if possible solve for x in terms of y to get a formula $x = f^{-1}(y)$.
- 2. Switch the roles of x and y to get a formula for f^{-1} of the form $y = f^{-1}(x)$ (this just amounts to a renaming of the variables to make x the independent variable).

Finding a Formula For $f^{-1}(x)$

Example: Let $f(x) = \frac{2x+1}{x-3}$, find a formula for $f^{-1}(x)$.

- 1. In the equation $y = \frac{2x+1}{x-3}$, if possible solve for x in terms of y to get a formula $x = f^{-1}(y)$:
 - Multiplying across by x 3, we get (x 3)y = 2x + 1 which gives xy 3y = 2x + 1
 - Bringing the terms with x to one side and all other terms to the other side, we get: xy 2x = 1 + 3y
 - ▶ Pulling out the x we get x(y-2) = 1 + 3y and dividing across by y 2, we get $x = \frac{1+3y}{y-2}$.
 - Thus we have $x = f^{-1}(y) = \frac{1+3y}{y-2}$.
- 2. Switch the roles of x and y to get a formula for f^{-1} of the form $y = f^{-1}(x)$
 - ▶ We get $f^{-1}(x) = \frac{1+3x}{x-2}$ with corresponding equation $y = \frac{1+3x}{x-2}$.

When do we need a formula For $f^{-1}(x)$

Note: Often, we do not need a formula for $f^{-1}(x)$ in order to find the value of f^{-1} at a specific value of x.

- ▶ Recall in the examples with f(x) = x³ + 1 and g(x) = cos(x) + 2x, we did not need to find a formula for f⁻¹(x) or g⁻¹(x) in order to find f⁻¹(28) and g⁻¹(1).
- ► This is especially useful to keep in mind when dealing with functions such as g(x) = cos(x) + 2x where it is difficult to solve for x and we had to use guesswork to solve it.